Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20257, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509802

RESUMO

La Palma, Canary Islands, underwent volcanic unrest which culminated in its largest historical eruption. We study this unrest along 2021 using Interferometric Synthetic Aperture Radar (InSAR) and a new improved interpretation methodology, comparing achieved results with the crustal structure. We reproduce the final phase of La Palma volcanic unrest, highligthing a shallow magma accumulation which begins about 3.5 months before the eruption in a crustal volume charactherized by low density and fractured rocks. Our modeling, together with our improved pictures of the crustal structure, allows us to explain the location and characteristics of the eruption and to detect failed eruption paths. These can be used to explain post-eruptive phenomena and hazards to the local population, such as detected gases anomalies in La Bombilla and Puerto Naos. Our results have implications for understanding volcanic activity in the Canaries and volcano monitoring elsewhere, helping to support decision-making and providing significant insights into urban and infrastructure planning in volcanic areas.

2.
Data Brief ; 43: 108342, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35712361

RESUMO

The geodetic dataset used in the research article entitled "Multi-technique geodetic detection of onshore and offshore subsidence along the Upper Adriatic Sea coasts"[1] is presented here. It consists of the outcomes of three different techniques, i.e. Synthetic Aperture Radar Interferometry (InSAR), Global Navigation Satellite System (GNSS) and topographic Levelling surveys. This dataset has been used for the estimation of onshore and offshore deformation in a mineral concession area located along the Upper Adriatic Sea coastal area (Italy), South-East of Ravenna city. InSAR data covers the period from 2002 to 2018, GNSS data from 1998 to 2018 and levelling data from 2002 to 2017.The different measurements have been cross-validated and referred to a common local reference system fixed in the urban area of Ravenna. This data collection will be very useful for deepening the analysis of any type of deformation in the Ravenna coastal area.

3.
Sci Rep ; 11(1): 2540, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510383

RESUMO

La Palma island is one of the highest potential risks in the volcanic archipelago of the Canaries and therefore it is important to carry out an in-depth study to define its state of unrest. This has been accomplished through the use of satellite radar observations and an original state-of-the-art interpretation technique. Here we show the detection of the onset of volcanic unrest on La Palma island, most likely decades before a potential eruption. We study its current evolution seeing the spatial and temporal changing nature of activity at this potentially dangerous volcano at unprecedented spatial resolutions and long time scales, providing insights into the dynamic nature of the associated volcanic hazard. The geodetic techniques employed here allow tracking of the fluid migration induced by magma injection at depth and identifying the existence of dislocation sources below Cumbre Vieja volcano which could be associated with a future flank failure. Therefore they should continue being monitored using these and other techniques. The results have implications for the monitoring of steep-sided volcanoes at oceanic islands.

4.
Sci Rep ; 10(1): 21238, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277534

RESUMO

Based on multidisciplinary data, including seismological and geodetic observations, as well as seismic reflection profiles and gravity maps, we analysed the pattern of crustal deformation and active tectonics in the Sicily Channel, a key observation point to unravel the complex interaction between two major plates, Nubia and Eurasia, in the Mediterranean Sea. Our data highlight the presence of an active ~ 220-km-long complex lithospheric fault system (here named the Lampedusa-Sciacca Shear Zone), approximately oriented N-S, crossing the study area with left-lateral strike-slip deformations, active volcanism and high heat flow. We suggest that this shear zone represents the most active tectonic domain in the area, while the NW-SE elongated rifting pattern, considered the first order tectonic feature, appears currently inactive and sealed by undeformed recent (Lower Pleistocene?) deposits. Estimates of seismological and geodetic moment-rates, 6.58 × 1015 Nm/year and 7.24 × 1017 Nm/year, respectively, suggests that seismicity accounts only for ~ 0.9% of crustal deformation, while the anomalous thermal state and the low thickness of the crust would significantly inhibit frictional sliding in favour of creeping and aseismic deformation. We therefore conclude that a significant amount of the estimated crustal deformation-rate occurs aseismically, opening new scenarios for seismic risk assessments in the region.

5.
Sci Data ; 7(1): 373, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149127

RESUMO

We provide a dataset of 3D coordinate time series of 37 continuous GNSS stations installed for stability monitoring purposes on onshore and offshore industrial settlements along a NW-SE-oriented and ~100-km-wide belt encompassing the eastern Italian coast and the Adriatic Sea. The dataset results from the analysis performed by using different geodetic software (Bernese, GAMIT/GLOBK and GIPSY) and consists of six raw position time series solutions, referred to IGb08 and IGS14 reference frames. Time series analyses and comparisons evidence that the different solutions are consistent between them, despite the use of different software, models, strategy processing and frame realizations. We observe that the offshore stations are subject to significant seasonal oscillations probably due to seasonal environmental loads, seasonal temperature-induced platform deformation and hydrostatic pressure variations. Many stations are characterized by non-linear time series, suggesting a complex interplay between regional (long-term tectonic stress) and local sources of deformation (e.g. reservoirs depletion, sediment compaction). Computed raw time series, logs files, phasor diagrams and time series comparison plots are distributed via PANGAEA ( https://www.pangaea.de ).

6.
Sci Rep ; 9(1): 6717, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040346

RESUMO

A new sequence of eruptions occurred at Mt. Etna volcano during the first half of 2017, after almost 8 months of quiescence. These episodes had low-to-mild intensity and markedly differ from the violent paroxysms occurred at the Voragine Crater (VOR) during December 2015 and May 2016. Despite the general weak explosive nature of the eruptions, the activity during 2017 revealed unusually complex dynamics of magma ascent and interaction. Detection and investigation of such dynamics required a multidisciplinary approach in which bulk rock compositions, crystal chemical zoning, diffusion chronometry and ground deformation data have been combined. Bulk rock major and trace elements suggest that the 2017 magmas followed a differentiation path similar to that experienced by magmas erupted at Mt. Etna during the 2015-16 eruptions at VOR. Olivine core compositions and zoning patterns indicate the presence of multiple magmatic environments at depth that strictly interacted each other through some episodes of intrusion and mixing before and during the 2017 eruptive events. Timescales retrieved from diffusion chronometry on olivine normal and reverse zoning correlate well with the ground deformation stages detected through geodetic data and associated models, thus allowing to track the evolution through time of the 2017 volcanic activity. Combination of all petrological and geodetic observations supports the idea that dynamics of magma transfer driving the eruptive episodes of 2017 have been a direct consequence of the violent eruptions occurred at VOR on May 2016, which boosted the ascent of new magma from depth and improved the efficiency of the plumbing system to transfer it upward to the surface. We propose a mechanism of self-feeding replenishment of the volcano plumbing system during 2017, where magma recharge from depth is triggered by sudden unloading of the magma column consequential to the violent paroxysmal activity occurred on May 2016 at VOR.

7.
Sci Rep ; 8(1): 14782, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283152

RESUMO

Land subsidence associated with overexploitation of aquifers is a hazard that commonly affects large areas worldwide. The Lorca area, located in southeast Spain, has undergone one of the highest subsidence rates in Europe as a direct consequence of long-term aquifer exploitation. Previous studies carried out on the region assumed that the ground deformation retrieved from satellite radar interferometry corresponds only to vertical displacement. Here we report, for the first time, the two- and three-dimensional displacement field over the study area using synthetic aperture radar (SAR) data from Sentinel-1A images and Global Navigation Satellite System (GNSS) observations. By modeling this displacement, we provide new insights on the spatial and temporal evolution of the subsidence processes and on the main governing mechanisms. Additionally, we also demonstrate the importance of knowing both the vertical and horizontal components of the displacement to properly characterize similar hazards. Based on these results, we propose some general guidelines for the sustainable management and monitoring of land subsidence related to anthropogenic activities.


Assuntos
Monitoramento Ambiental , Água Subterrânea/análise , Atividades Humanas , Europa (Continente) , Sistemas de Informação Geográfica , Humanos , Interferometria/métodos , Radar , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...